Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645095

RESUMO

Plants commonly produce families of structurally related metabolites with similar defensive functions. This apparent redundancy raises the question of underlying molecular mechanisms and adaptive benefits of such chemical variation. Cardenolides, a class defensive compounds found in the wallflower genus Erysimum (L., Brassicaceae) and scattered across other plant families, show substantial structural variation, with glycosylation and hydroxylation being common modifications of a steroid core, which itself may vary in terms of stereochemistry and saturation. Through a combination of chemical mutagenesis and analysis of gene coexpression networks, we identified four enzymes involved in cardenolide biosynthesis in Erysimum that work together to determine stereochemistry at carbon 5 of the steroid core: Ec3ßHSD, a 3ß-hydroxysteroid dehydrogenase, Ec3KSI, a ketosteroid isomerase, EcP5ßR2, a progesterone 5ß-reductase, and EcDET2, a steroid 5α-reductase. We biochemically characterized the activity of these enzymes in vitro and generated CRISPR/Cas9 knockout lines to confirm activity in vivo. Cardenolide biosynthesis was not eliminated in any of the knockouts. Instead, mutant plants accumulated cardenolides with altered saturation and stereochemistry of the steroid core. Furthermore, we found variation in carbon 5 configuration among the cardenolides of 44 species of Erysimum, where the occurrence of some 5ß-cardenolides is associated with the expression and sequence of P5ßR2. This may have allowed Erysimum species to fine-tune their defensive profiles to target specific herbivore populations over the course of evolution. SIGNIFICANCE STATEMENT: Plants use an array of toxic compounds to defend themselves from attack against insects and other herbivores. One mechanism through which plants may evolve more toxic compounds is through modifications to the structure of compounds they already produce. In this study, we show how plants in the wallflower genus Erysimum use four enzymes to fine-tune the structure of toxic metabolites called cardenolides. Natural variation in the sequence and expression of a single enzyme called progesterone 5ß-reductase 2 partly explains the variation in cardenolides observed across the Erysimum genus. These alterations to cardenolide structure over the course of evolution suggests that there may be context-dependent benefits to Erysimum to invest in one cardenolide variant over another.

2.
Plants (Basel) ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38498451

RESUMO

Plants in the genus Erysimum produce both glucosinolates and cardenolides as a defense mechanism against herbivory. Two natural isolates of Erysimum cheiranthoides (wormseed wallflower) differed in their glucosinolate content, cardenolide content, and their resistance to Myzus persicae (green peach aphid), a broad generalist herbivore. Both classes of defensive metabolites were produced constitutively and were not further induced by aphid feeding. To investigate the relative importance of glucosinolates and cardenolides in E. cheiranthoides defense, we generated an improved genome assembly, genetic map, and segregating F2 population. The genotypic and phenotypic analysis of the F2 plants identified quantitative trait loci, which affected glucosinolates and cardenolides, but not the aphid resistance. The abundance of most glucosinolates and cardenolides was positively correlated in the F2 population, indicating that similar processes regulate their biosynthesis and accumulation. Aphid reproduction was positively correlated with glucosinolate content. Although the overall cardenolide content had little effect on aphid growth and survival, there was a negative correlation between aphid reproduction and helveticoside abundance. However, this variation in defensive metabolites could not explain the differences in aphid growth on the two parental lines, suggesting that processes other than the abundance of glucosinolates and cardenolides have a predominant effect on aphid resistance in E. cheiranthoides.

3.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293015

RESUMO

Plants in the genus Erysimum produce both glucosinolates and cardiac glycosides as defense against herbivory. Two natural isolates of Erysimum cheiranthoides (wormseed wallflower) differed in their glucosinolate content, cardiac glycoside content, and resistance to Myzus persicae (green peach aphid), a broad generalist herbivore. Both classes of defensive metabolites were produced constitutively and were not induced further by aphid feeding. To investigate the relative importance of glucosinolates and cardiac glycosides in E. cheiranthoides defense, we generated an improved genome assembly, genetic map, and segregating F2 population. Genotypic and phenotypic analysis of the F2 plants identified quantitative trait loci affecting glucosinolates and cardiac glycosides, but not aphid resistance. The abundance of most glucosinolates and cardiac glycosides was positively correlated in the F2 population, indicating that similar processes regulate their biosynthesis and accumulation. Aphid reproduction was positively correlated with glucosinolate content. Although overall cardiac glycoside content had little effect on aphid growth and survival, there was a negative correlation between aphid reproduction and helveticoside abundance. However, this variation in defensive metabolites could not explain the differences in aphid growth on the two parental lines, suggesting that processes other than the abundance of glucosinolates and cardiac glycosides have a predominant effect on aphid resistance in E. cheiranthoides.

4.
New Phytol ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229566

RESUMO

The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model. We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field. EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side-chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores, but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores. These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.

5.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790475

RESUMO

The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field.EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.

6.
New Phytol ; 237(2): 631-642, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263711

RESUMO

Plants are widely recognized as chemical factories, with each species producing dozens to hundreds of unique secondary metabolites. These compounds shape the interactions between plants and their natural enemies. We explore the evolutionary patterns and processes by which plants generate chemical diversity, from evolving novel compounds to unique chemical profiles. We characterized the chemical profile of one-third of the species of tropical rainforest trees in the genus Inga (c. 100, Fabaceae) using ultraperformance liquid chromatography-mass spectrometry-based metabolomics and applied phylogenetic comparative methods to understand the mode of chemical evolution. We show: each Inga species contain structurally unrelated compounds and high levels of phytochemical diversity; closely related species have divergent chemical profiles, with individual compounds, compound classes, and chemical profiles showing little-to-no phylogenetic signal; at the evolutionary time scale, a species' chemical profile shows a signature of divergent adaptation. At the ecological time scale, sympatric species were the most divergent, implying it is also advantageous to maintain a unique chemical profile from community members; finally, we integrate these patterns with a model for how chemical diversity evolves. Taken together, these results show that phytochemical diversity and divergence are fundamental to the ecology and evolution of plants.


Assuntos
Fabaceae , Metabolômica , Metabolismo Secundário , Filogenia , Floresta Úmida
7.
Front Physiol ; 13: 1001032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237530

RESUMO

Herbivorous insects encounter diverse plant specialized metabolites (PSMs) in their diet, that have deterrent, anti-nutritional, or toxic properties. Understanding how they cope with PSMs is crucial to understand their biology, population dynamics, and evolution. This review summarizes current and emerging cutting-edge methods that can be used to characterize the metabolic fate of PSMs, from ingestion to excretion or sequestration. It further emphasizes a workflow that enables not only to study PSM metabolism at different scales, but also to tackle and validate the genetic and biochemical mechanisms involved in PSM resistance by herbivores. This review thus aims at facilitating research on PSM-mediated plant-herbivore interactions.

8.
Phytochemistry ; 192: 112965, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34610557

RESUMO

Plant specialized metabolites are often subject to within-plant transport and have tissue-specific distribution patterns. Among plants in the Brassicaceae, the genus Erysimum is unique in producing not only glucosinolates but also cardenolides. Ten cardenolides were detected with varying abundance in different tissues of Erysimum cheiranthoides L (Brassicaceae; wormseed wallflower). As is predicted by the optimal defense theory, cardenolides were most abundant in young leaves and reproductive tissues. The lowest concentrations were observed in senescing leaves and roots. Crosses between wildtype E. cheiranthoides and a mutant line with an altered cardenolide profile showed that the seed cardenolide phenotype is determined entirely by the maternal genotype. Prior to the development of the first true leaves, seedling cotyledons also had the maternal cardenolide profile. Hypocotyl grafting experiments showed that the root cardenolide profile is determined entirely by the aboveground plant genotype. In further grafting experiments, there was no evidence of cardenolide transport into the leaves, but a mixed cardenolide profile was observed in the stems and inflorescences of plants that had been grafted at vegetative and flowering growth stages, respectively. Together, these results indicate that E. cheiranthoides leaves are a site of cardenolide biosynthesis.


Assuntos
Brassicaceae , Chenopodium ambrosioides , Erysimum , Cardenolídeos , Glucosinolatos
9.
J Chem Ecol ; 46(11-12): 1131-1143, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33180277

RESUMO

Erysimum cheiranthoides L (Brassicaceae; wormseed wallflower) accumulates not only glucosinolates, which are characteristic of the Brassicaceae, but also abundant and diverse cardenolides. These steroid toxins, primarily glycosylated forms of digitoxigenin, cannogenol, and strophanthidin, inhibit the function of essential Na+/K+-ATPases in animal cells. We screened a population of 659 ethylmethanesulfonate-mutagenized E. cheiranthoides plants to identify isolates with altered cardenolide profiles. One mutant line exhibited 66% lower cardenolide content, resulting from greatly decreased cannogenol and strophanthidin glycosides, partially compensated for by increases in digitoxigenin glycosides. This phenotype was likely caused by a single-locus recessive mutation, as evidenced by a wildtype phenotype of F1 plants from a backcross, a 3:1 wildtype:mutant segregation in the F2 generation, and genetic mapping of the altered cardenolide phenotype to one position in the genome. The mutation created a more even cardenolide distribution, decreased the average cardenolide polarity, but did not impact most glucosinolates. Growth of generalist herbivores from two feeding guilds, Myzus persicae Sulzer (Hemiptera: Aphididae; green peach aphid) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae; cabbage looper), was decreased on the mutant line compared to wildtype. Both herbivores accumulated cardenolides in proportion to the plant content, with T. ni accumulating higher total concentrations than M. persicae. Helveticoside, a relatively abundant cardenolide in E. cheiranthoides, was not detected in M. persicae feeding on these plants. Our results support the hypothesis that increased digitoxigenin glycosides provide improved protection against M. persicae and T. ni, despite an overall decrease in cardenolide content of the mutant line.


Assuntos
Cardenolídeos/metabolismo , Erysimum/genética , Erysimum/metabolismo , Herbivoria/efeitos dos fármacos , Repelentes de Insetos/metabolismo , Animais , Afídeos/fisiologia , Brassica/metabolismo , Cardenolídeos/química , Digitoxigenina/química , Digitoxigenina/metabolismo , Expressão Gênica , Glucosinolatos/química , Glucosinolatos/metabolismo , Repelentes de Insetos/química , Mariposas/metabolismo , Mutação , ATPase Trocadora de Sódio-Potássio/metabolismo , Estrofantidina/química , Estrofantidina/metabolismo
10.
J Exp Bot ; 70(20): 5853-5864, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31257446

RESUMO

Saplings in the shade of the tropical understorey face the challenge of acquiring sufficient carbon for growth as well as defence against intense pest pressure. A minor increase in light availability via canopy thinning may allow for increased investment in chemical defence against pests, but it may also necessitate additional biochemical investment to prevent light-induced oxidative stress. The shifts in secondary metabolite composition that increased sun exposure may precipitate in such tree species present an ideal milieu for evaluating the potential of a single suite of phenolic secondary metabolites to be used in mitigating both abiotic and biotic stressors. To conduct such an evaluation, we exposed saplings of two unrelated species to a range of light environments and compared changes in their foliar secondary metabolome alongside corresponding changes in the abiotic and biotic activity of their secondary metabolite suites. Among the numerous classes of secondary metabolites found in both species, phenolics accounted for the majority of increases in antioxidant and UV-absorbing properties as well as activity against an invertebrate herbivore and a fungal pathogen. Our results support the hypothesis that phenolics contribute to the capacity of plants to resist co-occurring abiotic and biotic stressors in resource-limited conditions.


Assuntos
Fenóis/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Árvores/metabolismo , Árvores/fisiologia , Animais , Herbivoria , Metaboloma/genética , Metaboloma/fisiologia , Folhas de Planta/parasitologia , Árvores/parasitologia , Clima Tropical
11.
Plant Cell ; 31(5): 937-955, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30923231

RESUMO

Cultivated maize (Zea mays) has retained much of the genetic diversity of its wild ancestors. Here, we performed nontargeted liquid chromatography-mass spectrometry metabolomics to analyze the metabolomes of the 282 maize inbred lines in the Goodman Diversity Panel. This analysis identified a bimodal distribution of foliar metabolites. Although 15% of the detected mass features were present in >90% of the inbred lines, the majority were found in <50% of the samples. Whereas leaf bases and tips were differentiated by flavonoid abundance, maize varieties (stiff-stalk, nonstiff-stalk, tropical, sweet maize, and popcorn) showed differential accumulation of benzoxazinoid metabolites. Genome-wide association studies (GWAS), performed for 3,991 mass features from the leaf tips and leaf bases, showed that 90% have multiple significantly associated loci scattered across the genome. Several quantitative trait locus hotspots in the maize genome regulate the abundance of multiple, often structurally related mass features. The utility of maize metabolite GWAS was demonstrated by confirming known benzoxazinoid biosynthesis genes, as well as by mapping isomeric variation in the accumulation of phenylpropanoid hydroxycitric acid esters to a single linkage block in a citrate synthase-like gene. Similar to gene expression databases, this metabolomic GWAS data set constitutes an important public resource for linking maize metabolites with biosynthetic and regulatory genes.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Variação Genética , Estudo de Associação Genômica Ampla , Metaboloma , Zea mays/genética , Metabolômica , Fenótipo , Locos de Características Quantitativas/genética , Zea mays/química , Zea mays/metabolismo
12.
Science ; 363(6432): 1213-1216, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872524

RESUMO

Ecological theory predicts that the high local diversity observed in tropical forests is maintained by negative density-dependent interactions within and between closely related plant species. By using long-term data on tree growth and survival for coexisting Inga (Fabaceae, Mimosoideae) congeners, we tested two mechanisms thought to underlie negative density dependence (NDD): competition for resources and attack by herbivores. We quantified the similarity of neighbors in terms of key ecological traits that mediate these interactions, as well as the similarity of herbivore communities. We show that phytochemical similarity and shared herbivore communities are associated with decreased growth and survival at the sapling stage, a key bottleneck in the life cycle of tropical trees. None of the traits associated with resource acquisition affect plant performance, indicating that competition between neighbors may not shape local tree diversity. These results suggest that herbivore pressure is the primary mechanism driving NDD at the sapling stage.


Assuntos
Biodiversidade , Fabaceae/crescimento & desenvolvimento , Florestas , Herbivoria , Árvores/crescimento & desenvolvimento , Animais
13.
Front Plant Sci ; 9: 1237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190723

RESUMO

Coevolutionary theory has long predicted that the arms race between plants and herbivores is a major driver of host selection and diversification. At a local scale, plant defenses contribute significantly to the structure of herbivore assemblages and the high alpha diversity of plants in tropical rain forests. However, the general importance of plant defenses in host associations and divergence at regional scales remains unclear. Here, we examine the role of plant defensive traits and phylogeny in the evolution of host range and species divergence in leaf-feeding sawflies of the family Argidae associated with Neotropical trees in the genus Inga throughout the Amazon, the Guiana Shield and Panama. Our analyses show that the phylogenies of both the sawfly herbivores and their Inga hosts are congruent, and that sawflies radiated at approximately the same time, or more recently than their Inga hosts. Analyses controlling for phylogenetic effects show that the evolution of host use in the sawflies associated with Inga is better correlated with Inga chemistry than with Inga phylogeny, suggesting a pattern of delayed host tracking closely tied to host chemistry. Finally, phylogenetic analyses show that sister species of Inga-sawflies are dispersed across the Neotropics, suggesting a role for allopatric divergence and vicariance in Inga diversification. These results are consistent with the idea that host defensive traits play a key role not only in structuring the herbivore assemblages at a single site, but also in the processes shaping host association and species divergence at a regional scale.

14.
New Phytol ; 218(2): 847-858, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436716

RESUMO

The need for species identification and taxonomic discovery has led to the development of innovative technologies for large-scale plant identification. DNA barcoding has been useful, but fails to distinguish among many species in species-rich plant genera, particularly in tropical regions. Here, we show that chemical fingerprinting, or 'chemocoding', has great potential for plant identification in challenging tropical biomes. Using untargeted metabolomics in combination with multivariate analysis, we constructed species-level fingerprints, which we define as chemocoding. We evaluated the utility of chemocoding with species that were defined morphologically and subject to next-generation DNA sequencing in the diverse and recently radiated neotropical genus Inga (Leguminosae), both at single study sites and across broad geographic scales. Our results show that chemocoding is a robust method for distinguishing morphologically similar species at a single site and for identifying widespread species across continental-scale ranges. Given that species are the fundamental unit of analysis for conservation and biodiversity research, the development of accurate identification methods is essential. We suggest that chemocoding will be a valuable additional source of data for a quick identification of plants, especially for groups where other methods fall short.


Assuntos
DNA de Plantas/genética , Fabaceae/anatomia & histologia , Fabaceae/classificação , Metabolômica/métodos , Geografia , Análise Multivariada , Filogenia , América do Sul , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...